

Internet of Things (IoT) & Smart Automation Internship

(15 Days | Practical-Oriented | Industry Ready)

INTERNSHIP SYLLABUS

Internship Objectives

By the end of this internship, students will be able to:

- Understand IoT architecture & components
- Work with sensors, actuators, and microcontrollers
- Build real-time IoT systems using Arduino / ESP32
- Connect devices to cloud platforms
- Implement smart automation use cases
- Design and deploy a working IoT project independently

Tools & Technologies

- Arduino / ESP8266 / ESP32
- Sensors: DHT11, IR, Ultrasonic, LDR, Gas
- Communication: Wi-Fi, MQTT, HTTP
- Cloud: Thing Speak / Firebase / Blynk
- Programming: Embedded C, Basic Python
- Automation Concepts
- IoT Security Basics

DAY 1 – Introduction to IoT & Smart Automation

- What is IoT?
- IoT vs Automation vs Smart Systems
- Real-world IoT applications (Smart Home, Smart City, Industry 4.0)

Practical

Arduino IDE installation

Board & driver setup

Outcome

Student understands IoT ecosystem

DAY 2 – IoT Architecture & Hardware Basics

- IoT Architecture (Device \rightarrow Gateway \rightarrow Cloud \rightarrow App)
- Microcontrollers vs Microprocessors

Practical

Arduino board overview

LED blinking program

Outcome

First hardware program executed

DAY 3 – Sensors & Actuators

- Types of sensors
- Digital vs Analog sensors

Practical

Temperature & Humidity sensor (DHT11)

LED & buzzer control

Outcome

Sensor data reading

DAY 4 – Interfacing Sensors

- Sensor calibration
- Sensor data accuracy

Practical

Ultrasonic distance sensor

IR obstacle sensor

Outcome

Distance & object detection system

DAY 5 – Smart Automation Logic

- Automation rules & triggers
- Event-based systems

Practical

Automatic street light using LDR

Motion-based alarm system

Outcome

Rule-based automation

DAY 6 – IoT Communication Basics

- Wi-Fi, Bluetooth, GSM
- HTTP vs MQTT

Practical

ESP8266/ESP32 Wi-Fi connection

Sending data over Wi-Fi

Outcome

Device connected to internet

DAY 7 – Cloud Platforms for IoT

- Role of cloud in IoT
- Data storage & visualization

Practical

Thing Speak setup

Live sensor data upload

Outcome

Cloud-based data monitoring

DAY 8 – Mobile App Controlled IoT

- App-based automation
- Real-time control

Practical

Blynk / Firebase integration

Control LED via mobile app

Outcome

App-controlled IoT system

DAY 9 – Smart Home Automation

- Smart appliances
- Relay modules

Practical

Smart fan/light control

Voice / app-based switching

Outcome

Smart home prototype

DAY 10 – IoT Data Analytics Basics

- IoT data types
- Basic visualization

Practical

Sensor data graphs

Threshold-based alerts

Outcome

Data-driven automation

DAY 11 – IoT Security Basics

- IoT security threats
- Data encryption basics

Practical

Secure Wi-Fi connection

Token-based access

Outcome

Secure IoT communication

DAY 12 – Mini Project Design

- Project planning
- Hardware & software mapping

Practical

Smart parking

Smart irrigation

Smart energy meter

Outcome

Project blueprint ready

DAY 13 – Mini Project Implementation

Practical

Hardware wiring

Code integration

Cloud connection

Outcome

Working IoT mini project

DAY 14 – Final Project Development

Practical

Full automation logic

App + cloud + device integration

Outcome

Industry-level IoT project

DAY 15 – Testing, Demo & Documentation

Activities

- Live project demo
- Error handling
- Project report & PPT

Outcome

Ready for project submission & interviews